Applications of Fibonacci Sequences and Golden Ratio
نویسندگان
چکیده
The study mainly focuses on the use of Golden Ratio and Fibonacci sequence. connection between them can be clearly visible in nature. With help sequence scientists have solved many mysteries related to Everything that is around us somehow or other depends numbers, Ratio, Some examples are –Flower petals- Lily, Rose, Daisy, Marigold, Sunflower, Iris, Buttercups, wild rose, larkspur Trillium, Bloodroot, Aster, Susan; Seed heads-Sunflower; Snail; Fruit-Apple, Banana, Pineapple; Human Face; Tree Branches; Cyclone; Pinecones; Shells; Spiral Galaxies; Bees; Famous architecture design – Taj Mahal, Hindu rituals, decoding-coding data, providing security sensitive data all over world, mother's womb (about her baby's position), etc. current reflects there no limitation pattern our surroundings.
منابع مشابه
Declustering Using Golden Ratio Sequences
In this paper we propose a new data declustering scheme for range queries. Our scheme is based on Golden Ratio Sequences (GRS), which have found applications in broadcast disks, hashing, packet routing, etc. We show by analysis and simulation that GRS is nearly the best possible scheme for 2-dimensional range queries. Speciically, it is the best possible scheme when the number of disks (M) is a...
متن کاملA Class of Convergent Series with Golden Ratio Based on Fibonacci Sequence
In this article, a class of convergent series based on Fibonacci sequence is introduced for which there is a golden ratio (i.e. $frac{1+sqrt 5}{2}),$ with respect to convergence analysis. A class of sequences are at first built using two consecutive numbers of Fibonacci sequence and, therefore, new sequences have been used in order to introduce a new class of series. All properties of the se...
متن کاملToeplitz transforms of Fibonacci sequences
We introduce a matricial Toeplitz transform and prove that the Toeplitz transform of a second order recurrence sequence is another second order recurrence sequence. We investigate the injectivity of this transform and show how this distinguishes the Fibonacci sequence among other recurrence sequences. We then obtain new Fibonacci identities as an application of our transform.
متن کاملGolden Ratio Sequences for Low-Discrepancy Sampling
Most classical constructions of low-discrepancy point sets are based on generalizations of the one-dimensional binary van der Corput sequence whose implementation requires non-trivial bit-operations. As an alternative we introduce the quasi-regular golden ratio sequences which are based on the fractional part of successive integer multiples of the golden ratio. By leveraging results from number...
متن کاملThe Golden-fibonacci Equivalence
We shall refer to A and B as the large and the small Golden Ratios, respectively, and shall in general simply refer to these and their powers collectively as Golden Numbers. Likewise, the ratio between the neighboring Fibonacci Numbers un+i/un will be called the large Fibonacci Ratio. Here, "large" means that the suffices n + 1 > n, without inference to the values of the u s or their ratio. Its...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Informatics Electrical and Electronics Engineering (JIEEE)
سال: 2023
ISSN: ['2582-7006']
DOI: https://doi.org/10.54060/jieee.v4i1.83